What Is the Disease of Obesity?

Obesity Pathophysiology

AACE OBESITY RESOURCE CENTER

AACE ONLINE ENDOCRINE ACADEMY
Obesity Has Multiple Pathophysiologic Origins

Obesity Pathophysiology

Genetic and Epigenetic Origins
Genetic Determinants of Obesity Supported by Genome-Wide Association Studies

<table>
<thead>
<tr>
<th>Gene</th>
<th>Tissue expressed</th>
<th>Gene product / role in energy balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC4R</td>
<td>Adipocyte, hypothalamus, liver</td>
<td>Melanocortin 4 receptor / Appetite stimulation; monogenic cause of obesity</td>
</tr>
<tr>
<td>ADRB3</td>
<td>Visceral adipose tissue</td>
<td>β3-Adrenergic receptor / Regulates lipolysis</td>
</tr>
<tr>
<td>PCSK1</td>
<td>Neuroendocrine cells (brain, pituitary and adrenal glands)</td>
<td>Proprotein convertase 1 / Conversion of hormones (including insulin) into metabolically active forms</td>
</tr>
<tr>
<td>BDNF</td>
<td>Hypothalamus</td>
<td>Brain-derived neurotrophic factor / Appetite stimulation; regulated by MC4R signaling and nutritional state</td>
</tr>
<tr>
<td>LCT</td>
<td>Intestinal epithelial cells</td>
<td>Lactase / Digestion of lactose</td>
</tr>
<tr>
<td>MTNR1B</td>
<td>Nearly ubiquitous</td>
<td>Melatonin receptor 1 B / Regulation of circadian rhythms</td>
</tr>
<tr>
<td>TLR4</td>
<td>Adipocyte, macrophage</td>
<td>Toll-like receptor 4 / Lipolysis, inflammatory reactions</td>
</tr>
<tr>
<td>ENPP1</td>
<td>Nearly ubiquitous</td>
<td>Ecotnucleotide pyrophosphatase/phosphodiesterase 1 / Inhibits tyrosine kinase activity of the insulin receptor, downregulating insulin signaling and decreasing insulin sensitivity</td>
</tr>
<tr>
<td>FGFR1</td>
<td>Adipose, hypothalamus</td>
<td>Fibroblast growth factor receptor 1 / Hypothalamic regulation of food intake and physical activity</td>
</tr>
<tr>
<td>LEP, LEPR</td>
<td>Adipocyte</td>
<td>Leptin, leptin receptor / Appetite inhibition</td>
</tr>
</tbody>
</table>
Epigenetic Perturbations of Genes Associated with Obesity

- **Environmental toxins‡**
 - Decreased energy expenditure
 - Genes affected: *ODC, SSAT*
 - Abnormal adipocyte differentiation
 - Genes affected: *CEBPA, PPARG, FASN*
 - Leptin transcription
 - Genes affected: *CEBPA, PPARG, FASN*
 - Hypothalamic POMC
 - (homeostatic appetite inhibition*)
 - Genes affected: *POMC, ST8SIA4*
 - POMC neuronal response to leptin
 - (homeostatic appetite inhibition)
 - Genes affected: *POMC*
 - Dysregulation of dopaminergic neuronal signaling (hedonic appetite control)
 - Genes affected: *TH, SLC6A3, CDKN1C*

- **Nutrient deficiency†**

- **Obesogenic (high fat) diet**

- **↑ Adiposity**
 - Food intake

*Homeostatic appetite increase partially offset by upregulation of ST8SIA4. †Folate, vitamin D, vitamin A. ‡BPA, fetal alcohol exposure, POPs. See notes view for abbreviations.

Mechanisms of Epigenetic Regulation

- Environmental toxins†
 - H3K4 methylation
 - DNA methylation
 - Decreased energy expenditure
 - Gene affected: NNMT
 - Epigenetic regulator: Not determined

- Nutrient deficiency†
 - DNA methylation
 - Abnormal adipogenesis or adipocyte differentiation
 - Known epigenetic regulators: histone methyltransferases, miR-27a, 27b

- Obesogenic (high fat) diet
 - Histone acetylation
 - DNA methylation
 - Leptin transcription and affects on POMC
 - Known epigenetic regulators: DNMT1, MBD2, RNA polymerase II, miR-132, -143, -145, 200a, 200b
 - POMC
 - Known epigenetic regulators: Dnmt1, Mecp2, histone marks, KAT8, miR-103
 - Dysregulation of dopaminergic neuronal signaling
 - Epigenetic regulator: Not determined

↑ Adiposity

↑ Food intake

†Folate, vitamin D, vitamin A. ‡BPA, fetal alcohol exposure, POPs. See notes view for abbreviations.
Energy Homeostasis

Body Weight

Increase

Energy intake
Ingestion of:
• Proteins
• Fats
• Carbohydrates

Decrease

Energy expenditure
• Physical activity
• Diet-induced thermogenesis
• Basal metabolic rate
Adipose Tissue Types

<table>
<thead>
<tr>
<th></th>
<th>White</th>
<th>Beige/Brite</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td>Round</td>
<td>Round</td>
<td>Polygonal</td>
</tr>
<tr>
<td>Size</td>
<td>Larger</td>
<td>Larger</td>
<td>Smaller</td>
</tr>
<tr>
<td>Lipid droplets</td>
<td>Single, large</td>
<td>Intermediate</td>
<td>Numerous, small</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Peripheral</td>
<td>Peripheral</td>
<td>Central</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Few</td>
<td>Numerous, well-developed</td>
<td>Numerous, well-developed</td>
</tr>
<tr>
<td>Precursor</td>
<td>Myf5(−) lineage, BMP4-stimulated adipogenesis</td>
<td>Depot-specific origin: Myf5(−) or Myf11 and/or other(?)</td>
<td>Myf5(+) lineage, BMP7-stimulated adipogenesis</td>
</tr>
<tr>
<td>Body location</td>
<td>Subcutaneous, visceral</td>
<td>Subcutaneous, visceral</td>
<td>Neck, shoulders, spine</td>
</tr>
<tr>
<td>Function</td>
<td>Energy storage</td>
<td>Energy release, regulated by mitochondrial UCP1</td>
<td>Energy release, regulated by mitochondrial UCP1</td>
</tr>
</tbody>
</table>

White Adipose Tissue

- Main form of adipose tissue
 - Important endocrine organ that interacts with most other body organs
- Normally found in subcutaneous adipose tissue
 - ~50% adipocytes
 - ~50% other cells
 - Stem/precursor cells
 - Preadipocytes
 - Vascular, neural, and immune cells
 - Leukocytes

SAT = subcutaneous adipose tissue.
Ectopic White Adipose Tissue

- Due to limited SAT expandability, may accumulate in ectopic tissues
 - Viscera
 - Heart
 - Liver
 - Pancreas
 - Skeletal muscle
- Ectopic accumulation leads to increased insulin resistance and metabolic complications

Consequences of WAT Expansion

Healthy SAT

Positive energy balance

WAT hypertrophy

Increased physical stress, ROS, FFAs, chemokines, inflammatory cytokines

WAT apoptosis, macrophage infiltration, lipolysis, and fibrosis

Lipid accumulation in ectopic tissues (visceral cavity, heart, pancreas, liver, skeletal muscle)

FFA = free fatty acid; IL = interleukin; MCP-1 = monocyte chemoattractant protein 1; ROS = reactive oxygen species; SAT = subcutaneous adipose tissue; TG = triglyceride; TNF-α = tumor necrosis factor α; VAT = visceral adipose tissue; WAT = white adipose tissue.

Inflammation and Adipose Tissue Remodeling

Angptl2 = angiopoietin-like protein 2; CXCL14 = CXC motif chemokine ligand 14; MCP-1 = monocyte chemoattractant protein 1; TLR4 = Toll-like receptor 4; TNF-α = tumor necrosis factor α; TNF-R = tumor necrosis factor receptor.

Brown Adipose Tissue

- Functional PET and histological analyses show that nearly all adult humans have UCP1-expression BAT deposits in the cervical and superclavicular (neck) regions.
- There is a significant negative correlation between UCP1 mRNA abundance and BMI, accounting for 44% of BMI variance ($P = 0.004$).

BAT = brown adipose tissue; BMI = body mass index; mRNA = messenger ribonucleic acid; UCP1 = uncoupling protein 1.

Brown Fat Prevalence and Activity Decrease With Increasing Age and BMI

Prospective Cross-sectional Human Study (N=162)

Adiposity increases with age in BAT-negative individuals but not in BAT-positive individuals

*BAT not discernable with function positron emission tomography.

BAT = brown adipose tissue; BMI = body mass index; SUV\textsubscript{max} = maximal standardized uptake value.

Physiologic Origins: Adipose Tissue Inflammation and Adipose Dysfunction
Ectopic Fat Deposits Associated With Metabolic Disorders

<table>
<thead>
<tr>
<th>Systemic effects</th>
<th>Local effects</th>
<th>Metabolic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased metabolic risk factors</td>
<td>Increased risk for vascular diseases</td>
<td>Cardiovascular disease, type 2 diabetes</td>
</tr>
</tbody>
</table>

Pancreatic fat
- β-cell dysfunction, insulin resistance, impaired glucose metabolism, inflammation, lipotoxicity

Intramuscular fat
- Systemic and intramuscular insulin resistance, mitochondrial dysfunction, impaired lipid and glucose metabolism

Fatty liver
- Hepatic insulin resistance, oxidative stress, inflammation, ↑ lipogenic transcription factors, ↑ VLDL-TG

Visceral fat
- Inflammation, macrophage infiltration, insulin resistance, altered release of adipokines, altered FFA metabolites, RAS activation, oxidative stress

Perivascular fat
- Inflammation, ↑ TNF-α, IL-6, leptin, MCP-1, cell adhesion molecules, calcification, decreased diastolic function, coagulation defects

Epi/pericardial fat
- Hypertension, vascular resistance, glomerosclerosis, proteinuria, ↑ intra-renal pressure

Myocardial steatosis

Renal sinus fat

FFA = free fatty acid; IL = interleukin; MCP-1 = monocyte chemoattractant protein 1; RAS = renin angiotensin system; TG = triglyceride; TNF-α = tumor necrosis factor α; VLDL = very low density lipoprotein;

Pathogenesis of the Metabolic Syndrome Trait Complex

Central Adiposity

Dyslipidemia
- Increased large VLDL
- Increased small LDL
- Decreased large HDL

Endothelial Dysfunction
- Vascular reactivity
- Dysfibrinolysis
- Inflammation
- Foam cell proliferation

Insulin Resistance
- Glucose intolerance

Secreted Adipocyte Factors
- Adiponectin
- Leptin
- Resistin
- Free fatty acids
- PAI-1
- IL-6
- TNFα
- Angiotensinogen
- CETP

CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein; IL-6 = interleukin 6; LDL = low-density lipoprotein; PAI-1 = plasminogen activator inhibitor 1; TNF-α = tumor necrosis factor α; VLDL = very-low-density lipoprotein.

WT Garvey, 2013.
Association Between Visceral Fat and Insulin Resistance

CT scans courtesy of Wilfred Y. Fujimoto, MD.
Factors Secreted by Adipose Tissue Under Inflammatory Conditions

- Adiponectin
- Fatty acids: Lysophospholipids, Lactate, Adenosine, Prostaglandins, Glutamine
- Interleukins (IL-6, IL-8): TGF-β, FGF, EGF
- Leptin
- PAI-1
- Angiotensin
- ASP
- ADMA
- IGF-1
- IGFBP
- TNF-α
- CRP
- Bone morphogenic protein
- Resistin
- Retinol
- Unknown factors

ADMA = asymmetric dimethyl-arginine; ANG-II = angiotensin II; ASP = acylation-stimulating protein; CRP = C-reactive protein; EGF = epidermal growth factor; FGF = fibroblast growth factor; IGF-1 = insulin-like growth factor 1; IGFBP = insulin-like growth factor binding protein; PAI-1 = plasminogen activator inhibitor 1; TGF-β = transforming growth factor β; TNF-α = tumor necrosis factor α.

Physiologic Origins: Peripheral and Central Signals Controlling Energy Intake
Peripheral and Central Regulation of Energy Intake

Adaptations to Weight Loss: Obesity Protects Obesity

Eating Behavior Changes
- ↑ Hunger, preference for calorie dense foods

Metabolism Changes
- ↓ Fat oxidation, ↑ cortisol

Nervous System Changes
- ↓ SNS activity, increased mesolimbic reward center activity

Orexigenic Hormones
- Ghrelin

Anorexigenic Hormones
- Leptin, PYY, CCK, GLP-1, amylin, insulin

Energy Intake vs **Energy Expenditure**

CCK = cholecystokinin; GLP-1 = glucagon like peptide 1; NREE = nonresting energy expenditure; PYY = peptide YY; SNS = sympathetic nervous system; REE = resting energy expenditure; T4 = thyroxine; TEE = total energy expenditure.

Obesity-Related Impairments in Hormonal Regulation of Appetite and Energy Balance

Key Hormone Changes Associated with Weight Gain and Regain

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Source</th>
<th>Normal function</th>
<th>Alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholecystokinin (CCK)</td>
<td>Duodenum</td>
<td>Suppress appetite</td>
<td>Levels decrease during dieting and weight loss</td>
</tr>
<tr>
<td>Glucose-dependent insulinotrophic polypeptide (GIP)</td>
<td>Duodenum, jejunum</td>
<td>Energy storage</td>
<td>Levels increase during dieting and weight loss</td>
</tr>
<tr>
<td>Ghrelin</td>
<td>Gastric fundus</td>
<td>Stimulate appetite, particularly for high-fat, high-sugar foods</td>
<td>Levels increase during dieting and weight loss</td>
</tr>
<tr>
<td>Glucagon-like peptide 1 (GLP-1)</td>
<td>Ileum</td>
<td>Suppress appetite and increase satiety</td>
<td>Decreased functionality</td>
</tr>
<tr>
<td>Insulin</td>
<td>Pancreas</td>
<td>Regulate energy balance Signal satiety to brain</td>
<td>Insulin resistance in obese persons Reduced insulin levels after dieting</td>
</tr>
<tr>
<td>Leptin</td>
<td>Adipocytes</td>
<td>Regulate energy balance Suppress appetite</td>
<td>Levels decrease during weight loss</td>
</tr>
<tr>
<td>Peptide YY (PYY)</td>
<td>Distal small intestine</td>
<td>Suppress appetite</td>
<td>Levels decreased in obese persons</td>
</tr>
</tbody>
</table>

Hormonal Changes After Diet-Induced Weight Loss May Contribute to Regain

Prospective Observational Study (N=50)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Change from BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>95.4±13.5</td>
<td>-13.5±0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.9±1.1</td>
</tr>
</tbody>
</table>

P values shown in graphs are for mean postprandial period at 10 and 62 weeks vs baseline, except for amylin, which was not significantly different from baseline at 62 weeks.

Physiologic Origins: Metabolic Consequences of Aging
Age-Related Changes in Body Composition

Age-Related Sarcopenia and Sarcopenic Obesity

Characteristics

- Specific type II muscle fiber atrophy, fiber necrosis, and fiber-type grouping
 - Reduced satellite cell proliferation and differentiation may contribute to age-dependent decreases in muscle regenerative capacity
- Lipid infiltration into muscle tissue and increase in satellite cells with adipocytic phenotype

Etiologic Factors

- Decreased physical activity
- Altered nutritional intake
- Oxidative stress
- Hormonal changes
- Disruption of positive regulators (e.g., Akt and serum response factor)

Resistance Training Improves Body Composition in Elderly, Obese Patients

Adults, BMI 25-39 kg/m², Age 60-75 Years (N=27)

Change in Weight

Change in Fat and Muscle

DASH = Dietary Approaches to Stop Hypertension; IMAT = intermuscular adipose tissue; LDM = low density muscle; NDM = normal density muscle; SAT = subcutaneous adipose tissue; TAT = total thigh adipose tissue; TMA = total thigh muscle area.

Obesity Pathophysiology

Physiologic Origins: Gut Microbiota
Gut Microbiota and Metabolic Health

Healthy gut microbiota
- Gut permeability
- Endotoxemia
- Pro-inflammatory cytokines
- Beneficially active molecules (SCFAs, indole)
- Insulin sensitivity

Dysbiotic gut microbiota
- Gut permeability
- Endotoxemia
- Pro-inflammatory cytokines
- Adiposity
- Insulin resistance
- Calorie intake
- Obesity
- Metabolic syndrome

Gut microbial ecology
- Pro-inflammatory species
- Anti-inflammatory species
- Symbionts
 - Bifidobacteria
 - Lactobacilli
 - F. prausnitzii (Clostridiaceae phyla)
 - Bacteroides thetaiotamicron (Bacteroidetes phyla)
- Pathobionts
 - Bacteroides spp (Bacteroidetes phyla)
 - Clostridium difficile (Firmicutes phyla)

Bacterial gene count

Environmental factors
- High fat and high sugar diet, stress, antibiotics
- Healthy diet and lifestyle, prebiotics, probiotics, fecal transplantation

Improved gut and metabolic health

Metabolic diseases
- Type 2 diabetes, cardiovascular diseases, inflammatory bowel diseases, ...

Contributions of Altered Gut Microbiota to Obesity Pathogenesis

Behavioral, Sociocultural, and Environmental Origins
Sociocultural and Environmental Contributors to Obesity

Sociocultural
- Preference for foods high in fat and/or carbohydrates
- Large portion sizes (value meals)
- Work-life circumstances
 - Sedentary occupations and leisure activities
 - Heavy time commitments to work, social, and family obligations
 - Sleep deprivation

Environmental
- Community design and infrastructure not conducive to physical activity
 - Lack of safe, convenient areas for outdoor activities
 - Distances between homes and work/shops too far for walking
 - Lack of public transportation
 - Ubiquity of escalators, elevators, etc

Effects of Alcohol, Sleep Deprivation, and TV Watching on Food Intake

Lifestyle Effects Meta-analysis

<table>
<thead>
<tr>
<th>Lifestyle</th>
<th>Effect size (95% CI)</th>
<th>P value</th>
<th>No. studies / subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>1.03 (0.66, 1.4)</td>
<td><0.001</td>
<td>14 / 278</td>
</tr>
<tr>
<td>Sleep deprivation</td>
<td>0.49 (0.11, 0.88)</td>
<td>0.01</td>
<td>5 / 78</td>
</tr>
<tr>
<td>TV watching</td>
<td>0.20 (0.04, 0.37)</td>
<td>0.02</td>
<td>15 / 363</td>
</tr>
</tbody>
</table>

Possible Neurobehavioral Mechanisms Underlying Development of Obesity

Normal

- Conditioned memory
- Reward signals
- Inhibitory control
- Drive to eat

Chronic exposure to obesity-promoting behaviors (e.g., alcohol abuse, sleep deprivation, TV)

- Conditioned memory
- Reward signals
- Inhibitory control
- Drive to eat

Obesity Pathophysiology

Summary
Summary

- Obesity has a genetic basis as well as environmental and behavioral origins
- Age contributes to shift in balance between fat and muscle mass
- Various negative feedback loops contribute to obesity
 - Increased caloric intake and reduced physical activity
 - Alters energy homeostasis \rightarrow reduced metabolic rate
 - Alters neurohormonal signals \rightarrow increased appetite
 - Increased visceral adiposity
 - Promotes insulin resistance
 - Promotes inflammation
 - Worsens insulin resistance
 - Leads to macrophage mobilization into adipose tissue, which worsens inflammation
 - Together, inflammation and insulin resistance contribute to development of cardiovascular disease, type 2 diabetes, cancer, and other poor outcomes